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Abstract 

Stock price forecasting is, and will always be, one of the most imperative financial 

conjectures investors are confronted with. There are plentiful ways of effectively 

forecasting a company’s share price, most of which rely on various factors that have a 

bearing on the market price of shares. This paper, however, has employed a method of 

forecasting which is based on the previous values of the variable itself. This method, 

technically known as the ARIMA methodology, was developed by Box and Jenkins in 

1970. The current paper employed this method on stock prices of one of the largest 

companies in Pakistan, i.e. Oil & Gas Development Company Limited (OGDCL). Daily 

adjusted closing stock prices of the company were taken from 2004 to 2018 covering 

almost 15 years with 3632 observations. Results showed that some of the ARIMA 

archetypes used in the study had a strong potential for prediction in the short run. It was, 

therefore, deduced that ARIMA modeling works pretty efficiently for short-term 

prediction. Investors in stocks may use the findings of the study to supplement their 

forecasting aptitude. 
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Introduction 

Stock price prediction is one of the most talked-about phenomena in 

contemporary financial literature. Individual and institutional investors put all their effort 

to better envisage the future probable price of a given company’s common stock. The 

million dollar question is; how to anticipate as closely as possible the future market price 

of a given stock. Most of the researchers have traditionally attempted to forecast stock 

prices through factors that have an effect, positive or negative, on given firms’ value 

and/or profitability. In other words, the explained variable (prices) is to be predicted by 

regressing it on multiple explanatory variables. In this paper, an endeavor has been made 

to speculate our variable of interest by means of the lagged values of the variable itself, 

based on a popular notion of letting the data speak for themselves (Gould, 1981). 

Therefore, Autoregressive Integrated Moving Average, or commonly known as ARIMA, 

modeling has been employed to allow the previous values of the dependent variable and 

the error term to guess the most probable value of our variable of interest. 

The prime rationale behind this work is to check whether or not the model 

employed in this study, i.e., the ARIMA works reasonably well in predicting future stock 

prices. Further, it is also intended to know if the model is more efficient in short-term 

forecasting or has it got more capability to anticipate stock prices in the longer run. 

Hence, the objectives of the study are two-fold --- to check for the applicability of 

ARIMA model in predicting the values of a variable, and to investigate which type of 
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prediction, short-term or long-term, is best provided by the model. It is expected that the 

work undertaken will significantly help investors decide when to invest in a given 

company’s stock. In other words, implications of the study are that it is expected to be 

useful for potential stock investors by helping them determine the correct time to invest 

or disinvest in a given stock. 

There have been many studies in the developed part of the world that have used 

ARIMA technique for forecasting various time series variables, some of which have used 

the model for estimating stock prices as well. However, fewer studies have been 

conducted in Pakistan for anticipating stock prices engaging ARIMA. More specifically, 

no study, to the best of our acquaintance, has been conducted in the country using the 

daily stock prices data of any non-financial KSE 100 Index company. The current work 

seeks to fill this gap by taking daily stock prices data of an oil exploratory company in 

Pakistan popularly named as the OGDCL. 

 The Oil and Gas Development Company Limited (OGDCL) is the largest 

company of Pakistan in the E&P (Exploration &   Production) sector of Pakistan Stock 

Exchange. The company was established by the Government of Pakistan in 1961 and 

later went public on October 23, 1997. The company is undoubtedly the largest of its 

kind in the country in terms of production, market capitalization, acreage, oil exploration, 

reserves and profitability. The company’s shares are primarily listed in Pakistan Stock 

Exchange and have a secondary listing on London Stock Exchange since 2006 making it 

a Pakistani multinational. The government of Pakistan still owns 74% of shares in the 

company. 

Review of Literature 

A plentiful amount of research has been undertaken in numerous disciplines or 

subjects that involve ARIMA methodology for the purpose of forecasting the future 

value(s) of a given variable. To discuss a few, Gay (2016) made an effort to investigate 

the relationship of macroeconomic variables on stock returns of BRIC countries that 

include Brazil, Russia, India and China. He made use of the Box-Jenkins method to serve 

the purpose. The factors taken into account were the exchange rates and the oil prices. No 

statistically significant association was found to be there between the given 

macroeconomic factors and stock returns for any of the BRIC economies. Moreover, no 

significant link was identified of stock return with its lagged values for any of the four 

countries. Similarly, Manoj and Madhu (2014) used the Box-Jenkins approach to predict 

the production of sugarcane in India. They found that the model was able to predict future 

production of sugarcane for almost five years. The most suitable ARIMA configuration 

for sugarcane was found to be ARIMA (2, 1, 0). Hamjah (2014) also employed ARIMA for 

anticipating rice production in Bangladesh. He made a comparison between the actual 

data of rice production and the predicted series and found that the model had a very good 

forecasting ability in the short run. 

Guha (2016) anticipated gold prices in India using ARIMA model in order to give 

insinuations to the investors about when, and when not, to buy gold. Jadhav, Reddy and 

Gaddi (2017) used ARIMA for predicting the prices of farms and then further used the 

same for major crops in the Karnataka state of India, namely the Paddi, Ragi and Maize. 



Copyright © 2018. NIJBM                                                                                   

 

 

 132 

NUML International Journal of Business & Management                    ISSN 2410-5392 (Print), ISSN 2521-473X (Online)  

Vol. 13, No: 2. Dec., 2018  

 

They took the data from 2002 to 2016 and found that the model had a very strong power 

to estimate values for the future. On the basis of this, they also forecasted the 2020 prices 

of the crops. 

Mondal, Shit and Goswami (2014) employed a sector-specific analysis of Indian 

stocks using ARIMA model. They conducted a study on the capability of the model using 

fifty six Indian stocks from various sectors. They found that the model correctly predicted 

stock prices to the extent of 85% for all sectors. Banerjee (2014) also used ARIMA to 

predict future Indian stock market index and found the model very accurate in short-term 

forecasting.  

Some Pakistani researchers also made use of ARIMA technique to forecast 

different time series variables. For instance, Zakria and Muhammad (2009) used the 

model predict the future population of the country of Pakistan. They found out that if the 

country’s population continues to grow at the same rate, there are expected to be 230.68 

million people in the country by 2027. The different statistical bureaus of Pakistan, on the 

other hand, have estimated the country’s population to reach 229 million by 2025. Hence, 

they concluded that the model worked well for predicting their variable of interest. In 

another study, Farooqi (2014) used ARIMA for predicting the imports and exports of 

Pakistan. They took the data from 1947 to 2013 and found that ARIMA (2, 2, 2) and 

ARIMA (1, 2, 2) worked better for predicting both imports and exports. Similarly, Saeed, 

Saeed, Zakria and Bajwa (2000) attempted to anticipate the production of wheat in 

Pakistan using the ARIMA model. They found in the diagnostic checking stage of their 

study that ARIMA (2, 2, 1) was most appropriate for the estimation of wheat production. 

They believed that the findings of the study would prove helpful for the concerned 

persons to foretell in advance the requirements of imports and exports of grain storage. In 

the same manner, Khan, Khan, Shaikh, Lodhi and Jilani (2015) also employed ARIMA 

model for predicting rice production in Pakistan. The data related to rice production was 

taken from 1993 to 2015. The diagnostic checking showed ARIMA (2, 1, 1) to be the 

most suitable ARIMA configuration for estimating rice production in Pakistan.     

 The previous work, therefore, shows that ARIMA has a good capacity of 

estimating various time series data including stock prices. Whether or not the model 

could successfully foretell the future values of our variable of interest (i.e., OGDCL’s 

stock prices) will be analyzed in the later sections of the study. We now move on to 

discuss what ARIMA technique is and how it works.  

The ARIMA Model 

ARIMA model was introduced by statisticians George Box and Gwilym Jenkins 

in their book ‘Time Series Analysis: Forecasting and Control’ (Box & Jenkins, 1970). 

This method is suitable for time series of medium to longer length. According to 

Chatfield (1996), there should be at least 50 observations for ARIMA model to work. 

Many of the other researchers argue that the number of observations should be larger than 

100 for the model to give better results. The model predicts future values of a time series 

on the basis of its past values and on the basis of the past values of error term. The 

foremost difficulty in ARIMA modeling is to identify how many lagged values of a 

variable as well as the error term effectively forecast the current, and future, value of the 
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variable. The developers of the model, Box and Jenkins, have emphasized on going along 

with the principle of parsimony, i.e., keeping the model as simple and condensed as 

possible. A lengthy model which includes a larger number of regressors would, of course, 

better forecast a given time series (since R
2
 will increase) but at the cost of decreasing 

degrees of freedom. The two scientists proposed a three-stage model for predicting a 

given time series. Therefore, the model is also popularly known as the Box-Jenkins 

methodology; although the econometric term for this type of model prediction is called 

the ARIMA modeling. The four stages of the Box-Jenkins model are (a) identification of 

the model, (b) model estimation, (c) diagnostic checking, and (d) forecasting. In the first 

stage, i.e., identification, the researcher visually inspects plots of the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) simultaneously to check 

for patterns such as spikes, exponential decay or damped sinewave etc. Through this 

process, the most suitable ARIMA configuration, including the number of autoregressive 

processes (i.e., the AR) influencing a given time series variable, the number of moving 

average processes (i.e., the MA) and the number of times the series should be differenced 

in order to render it stationary (i.e., the d), for the time series is identified (Asteriou, 

2007). 

In the second stage of the Box-Jenkins methodology, econometric estimations are 

made. All the tentative models are estimated so that their respective coefficients 

including the R
2
 values, the Akaike Information Criterion (AIC) and the Schwarz 

Bayesian Criterion (SBC) coefficients etc. are compared. The third stage of the process 

involves diagnostic checking in which a comparison is made among the models on the 

basis of the just-mentioned criteria and the one which is the most parsimonious is 

selected. In the final stage of the methodology, i.e., the forecasting, the next or the future 

value of the time series is mathematically computed to see how close the forecasted value 

is with the actual value. This also gives calculation of the error term.  

Research Methodology 

The study deals with analysis of a univariate time series. When dealing with time 

series econometric framework, it is often better to extract information about a variable 

that can be gathered from the variable itself (Asteriou & Hall, 2007). Therefore, as 

mentioned before, the autoregressive integrated moving average (ARIMA) model, also 

popularly known as the Box-Jenkins methodology, which has been discussed in the 

previous section, has been employed in the study. The general configuration for an 

ARMA process as taken up from Asteriou and Hall (2007) is:  

Yt = φ1Yt-1 + φ2Yt-2 + - - - + φpYt-p + εt + θ1εt-1 + θ2εt-2 + - - - + θqεt-q   

Where, 

Yt is the predicted value of the variable, Yt-1, Yt-2, - - - , Yt-p are the lagged values 

of the dependent variable or the autoregressive terms, εt is the error term, εt-1, εt-2, - - - , εt-q 

are the lagged values of the error or the moving average terms, and φ and θ are the 

coefficients or slopes of the regressors. 

But this process assumes that the time series variable under consideration is 

weakly stationary. The term stationarity here indicates that the mean and the variance of 

the series are roughly constant overtime and that the covariance of the series is one that is 
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time-invariant (Gujarati & Porter, 2004). However, our familiarity with time series data 

depicts that most, if not all, of the time series are integrated and therefore clearly non-

stationary. Using ARMA process over a non-stationary data will, of course, give no 

results. Hence, the more appropriate and customized ARIMA procedure was employed so 

that the series, if integrated, is differenced enough to render it sufficiently stationary.     

The data used for the study were OGDCL’s daily stock returns for around fifteen 

years computed through the closing prices of the company. To reiterate, the current study 

uses a univariate time series analysis. This is the reason why only a single company was 

taken up for the study. Of course the analysis can be extended to any other single 

company as well. However, taking multiple companies at the same time will require 

multivariate time series analysis, a procedure not addressed in the current study. 

In order to discover the most fitting ARIMA configuration for the stock prices of the 

company studied, the following criteria, as prescribed by Box and Jenkins (1970), was 

followed for model selection: 

o The model with the least insignificant parameters 

o The model with the highest adjusted R
2
 

o The model with the lowest Akaike Information Criterion and Schwarz Bayesian 

Criterion values 

o If all else the same, then the model which is the most parsimonious 

Results and Findings 
The stock price data for OGDCL contains daily closing prices from Jan 23, 2004 

to Nov 19, 2018 covering nearly 15 years. This translated into 3682 observations. Before 

using the ARIMA technique, it is necessary to ensure that the variable obeys the 

convention of Stationarity. A variable is said to be stationary if it has a time-invariant 

mean, variance and covariance (Gujarati & Porter, 2004). The Stationarity of stock prices 

of the company under study was checked through line graph for visible inspection and 

was further validated through the Augmented Dickey Fuller test.  
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Figure 1: Non-Stationary Share Prices of OGDCL 
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Figure 1 shows the non-stationary behavior of share prices as expected. The 

result has been attested by the ADF test statistic which is insignificant at 5% level. 

Table 1: Augmented Dickey Fuller Test for OGDCL Stock Price 

Null Hypothesis: STOCKPRICE has a unit root  

Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, max lag = 19) 

     
   t-Statistic   Prob. 

     Augmented Dickey-Fuller test statistic -2.224  .198 

Test critical values: 1% level  -3.439  

 5% level  -2.865  

 10% level  -2.569  

     
Table 2 gives the correlogram of the time series under study. As per the theory, 

the correlogram of a stationary process should fade away as the lag length increases. 

However, as is visible in the given figure, the autocorrelation function (ACF) of 

OGDCL’s stock prices does not vanish at all portraying the non-stationary nature of the 

series. 
Table 2: Autocorrelation and Partial Autocorrelation Function of OGDCL Stock  

       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

              .|*******        .|******* 1 .991 .991 734.62 .000 

       .|*******        *|      | 2 .981 -.079 1455.0 .000 

       .|*******        .|      | 3 .971 .017 2161.6 .000 

       .|*******        .|      | 4 .961 .003 2855.0 .000 

       .|*******        .|      | 5 .951 -.015 3534.9 .000 

       .|*******        .|      | 6 .941 .021 4202.1 .000 

       .|*******        .|      | 7 .933 .063 4858.6 .000 

       .|*******        .|      | 8 .924 -.028 5503.9 .000 

       .|*******        .|      | 9 .917 .033 6139.1 .000 

       .|*******        .|      | 10 .909 -.003 6764.2 .000 

       .|******|        .|      | 11 .901 .016 7379.9 .000 

       .|******|        .|      | 12 .894 .008 7986.5 .000 

       .|******|        .|      | 13 .887 .054 8585.3 .000 

       .|******|        .|      | 14 .881 -.026 9176.1 .000 

       .|******|        .|      | 15 .874 -.011 9758.5 .000 

       .|******|        .|      | 16 .867 .013 10333. .000 

       .|******|        .|      | 17 .860 -.065 10898. .000 

In order to induce stationarity, therefore, natural logarithms have been employed 

for stock prices and then the change in the log of stock prices, i.e., the first difference, has 

been taken into account. The result is a stationary series as evident from figure 2.  

The evidence of the stationarity of the series is also blatant from the ADF test 

that has been employed again on the logged differenced series of stock prices. This time 

the test statistic is highly significant at 1% level (see table 3). 
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Table 3: Augmented Dickey-Fuller Test for Logged Differenced Stock Prices 

Null Hypothesis: DLSTOCKPRICE has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=19) 

        t-Statistic   Prob.* 

          
Augmented Dickey-Fuller test statistic -23.174  .000 

Test critical values: 1% level  -3.439  

 5% level  -2.865  

 10% level  -2.569  

     
*MacKinnon (1996) one-sided p-values.  

-.3

-.2

-.1

.0

.1

.2

1/
23

/0
4

8/
20

/0
4

4/
1/

05

11
/1

1/
05

6/
16

/0
6

1/
19

/0
7

8/
17

/0
7

3/
14

/0
8

10
/1

0/
08

5/
8/

09

1/
22

/1
0

9/
3/

10

4/
8/

11

11
/1

1/
11

6/
29

/1
2

2/
8/

13

9/
13

/1
3

4/
11

/1
4

11
/7

/1
4

6/
5/

15

1/
22

/1
6

8/
19

/1
6

3/
17

/1
7

10
/1

3/
17

5/
4/

18

Trading Periods

Sh
ar

e 
Pr

ice

 
Figure 2: Stationarity-Induced Share Prices of OGDCL 

Model Identification  

After stationarity in the given time series has been achieved through logged 

differencing, we move on to apply the Box-Jenkins methodology. The first step is the 

identification of the appropriate model. Hence, a Correlogram is again made to explore 

the number of AR and MA terms that the stock price of OGDCL depends on. 
Table 4: Autocorrelation and Partial Autocorrelation Function of Logged Differenced OGDCL 

Stock Prices 

Autocorrelation Partial Correlation  AC PAC Q-Stat Prob 

       
       

.|*     | .|*     | 1 .160 .160 19.057 .000 

.|      | .|      | 2 .014 -.012 19.203 .000 

.|      | .|      | 3 .025 .026 19.684 .000 

.|      | .|      | 4 .041 .034 20.937 .000 

.|      | .|      | 5 -.037 -.050 21.969 .001 

*|      | *|      | 6 -.098 -.087 29.260 .000 

.|      | .|      | 7 -.010 .018 29.343 .000 

.|      | .|      | 8 -.044 -.046 30.792 .000 

.|      | .|      | 9 -.035 -.014 31.702 .000 

.|      | .|      | 10 -.027 -.013 32.245 .000 

.|      | .|      | 11 -.044 -.045 33.689 .000 
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.|      | .|      | 12 -.055 -.047 35.965 .000 

.|      | .|      | 13 -.022 -.006 36.349 .001 

.|      | .|      | 14 .016 .014 36.539 .001 

.|      | .|      | 15 -.015 -.021 36.712 .001 

The general methodology of ARIMA modeling as prescribed by Box and Jenkins 

involves: 

a. Selecting an upper limit for p, say pmax, and q, say qmax ;  

b. Estimating all models with 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax ; and 

c. Using information criteria like AIC, SBC and R
2
 to make a distinction among the 

contending models.  

Studying table 4, it is observed that there is only one positive spike in the 

autocorrelation function and one in the partial autocorrelation function and then both die 

down immediately. This signals, evidently, towards an ARIMA (1, d, 1) model. However, 

researchers normally attempt to fit an ARIMA (1, d, 0) model and an ARIMA (2, d, 1) as a 

starting point. Using the principal of parsimony, nonetheless, the model which is the most 

thrifty and tightfisted will be preferred. 

Model Estimation  

In the current segment, a few of the most probable models of ARIMA including 

the one prescribed by the Box-Jenkins method are estimated and their results are 

compared in order to determine the one which fits the most and yet is the most 

parsimonious. 
Table 5: Regression Results using ARIMA (1, d, 1) Model 

Dependent Variable: Logged Differenced Stock Price  

Method: Least Squares  

Included observations: 3682 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob. 

     C .000 .000 .679 .497 

AR(1) .652 .079 8.271 .000 

MA(1) -.551 .087 -6.345 .000 

     R-squared .018 Mean dependent var .000 

Adjusted R-squared .017 S.D. dependent var .018 

S.E. of regression .018 Akaike info criterion -5.184 

Sum squared resid 1.206 Schwarz criterion -5.179 

Log likelihood 9547.090 Hannan-Quinn criter. -5.183 

F-statistic 33.009 Durbin-Watson stat 1.982 

Prob (F-statistic) .000    

     

Table 5 presents the results of ARIMA (1, d, 1) model, the one which has been 

selected using the typical Box-Jenkins method. Both the parameters of the model are 

significant at 5% level. The model has an adjusted R
2
 value of .018. However, in order to 

ensure this model is the most fitting one, a few other probable models are also run so that 

a comparative analysis amongst them is made.  
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Table 6: Regression Results using ARIMA (2, d, 1) Model 

Dependent Variable: Logged Differenced Stock Price  

Method: Least Squares  

Included observations: 3681 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

     C .000 .000 .641 .521 

AR(1) .862 .108 7.967 .000 

AR(2) -.045 .026 -1.699 .089 

MA(1) -.753 .106 -7.074 .000 

     
R-squared .018     Mean dependent var .000 

Adjusted R-squared .017     S.D. dependent var .018 

S.E. of regression .018     Akaike info criterion -5.185 

Sum squared resid 1.204     Schwarz criterion -5.178 

Log likelihood 9546.159     Hannan-Quinn criter. -5.182 

F-statistic 22.464     Durbin-Watson stat 2.000 

Prob (F-statistic) .000    

Table 6 represents the results of ARIMA (2, d, 1) model, the one which is often 

used in many ARIMA analyses by researchers. This model seems to be a bit inferior to 

ARIMA (1, d, 1) model, or the one using Box-Jenkins approach, as one of the three 

parameters of the model is insignificant at 5% level. The adjusted R
2
 value of the two 

models is, however, equal. As far as the information criteria are concerned, ARIMA (2, d, 

1) has a lesser Akaike information criterion (AIC) value and higher Schwarz Bayesian 

criterion (SBC), and the Hannan-Quinn criterion (HQC) values than ARIMA (1, d, 1). 

Since the lower the information criterion values, the better the model is, therefore ARIMA 

(1, d, 1) can be considered better than ARIMA (2, d, 1).  
Table 7: Regression Results using ARIMA (1, d, 0) Model 

Dependent Variable: Logged Differenced Stock Price  

Method: Least Squares  

Included observations: 3682 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

     C .000 .000 .798 .424 

AR(1) .117 .016 7.191 .000 

     R-squared .013     Mean dependent var .000 

Adjusted R-squared .013     S.D. dependent var .018 

S.E. of regression .018     Akaike info criterion -5.181 

Sum squared resid 1.211     Schwarz criterion -5.177 

Log likelihood 9540.037     Hannan-Quinn criter. -5.180 

F-statistic 51.712     Durbin-Watson stat 2.011 

Prob(F-statistic) .000    

     

In an attempt to further trim down or abridge our prescribed model, the simplest 

autoregressive process of order 1, i.e., the ARIMA (1, d, 0) process or the AR (1) process, 

was also examined. It was, however, found that the adjusted R
2
 value further decreased, 
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although by a very small fraction. All the information criterion values including AIC, 

SBC and HQC also were slightly higher than those for ARIMA (1, d, 1). This indicated 

that ARIMA (1, d, 1) was probably the simplest possible configuration and that any 

further simplification introduced in the model would come at the cost of a reduced 

forecasting capacity. The results of ARIMA (1, d, 0) model are summarized in table 7. 
Table 8: Regression Results using ARIMA (2, d, 2) Model 

Dependent Variable: Logged Differenced Stock Price  

Method: Least Squares  

Included observations: 3681 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob. 

     C .000 .000 .683 .494 

AR(1) -.319 .102 -3.118 .002 

AR(2) .580 .089 6.468 .000 

MA(1) .422 .108 3.886 .000 

MA(2) -.477 .094 -5.024 .000 

R-squared .018     Mean dependent var .000 

Adjusted R-squared .017     S.D. dependent var .018 

S.E. of regression .018     Akaike info criterion -5.184 

Sum squared resid 1.205     Schwarz criterion -5.176 

Log likelihood 9546.447     Hannan-Quinn criter. -5.181 

F-statistic 16.989     Durbin-Watson stat 1.985 

Prob(F-statistic) .000    

     

In search of getting the most appropriate model, ARIMA (2, d, 2) was also 

checked for its prediction capacity. As can be seen in table 8, all the parameters of the 

model were highly significant. The adjusted R
2
 of the model was also equal to the Box-

Jenkins’ specified ARIMA (1, d, 1). However, all the information criterion values of the 

model were slightly higher than those for ARIMA (1, d, 1) which, again, made the model 

less practicable than ARIMA (1, d, 1). 

In the final endeavor, an over-parameterized model was run to check whether it 

came up with an even better predictive ability or not. Hence, an ARIMA (3, d, 3) model 

was also estimated. As can be examined in table 9, it too worked out to be less powerful 

than ARIMA (1, d, 1).  
Table 9: Regression Results using ARIMA (3, d, 3) Model 

Dependent Variable: Logged Differenced Stock Price  

Method: Least Squares  

Included observations: 3680 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.   

     C .000 .000 .643 .520 

AR(1) .064 .517 .125 .901 

AR(2) .784 .153 5.114 .000 

AR(3) -.132 .347 -.380 .704 

MA(1) .045 .519 .088 .930 

MA(2) -.734 .196 -3.750 .000 

MA(3) .072 .303 .237 .812 
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R-squared .019     Mean dependent var .000 

Adjusted R-squared .017     S.D. dependent var .018 

S.E. of regression .018     Akaike info criterion -5.183 

Sum squared resid 1.204     Schwarz criterion -5.172 

Log likelihood 9544.920     Hannan-Quinn criter. -5.179 

F-statistic 11.848     Durbin-Watson stat 1.999 

Prob (F-statistic) .000    

     

The aforementioned table represents ARIMA (3, d, 3) configuration, the model 

with the maximum number of parameters run so far. The model has the same adjusted R
2
 

value as that of ARIMA (1, d, 1) but more information criterion values. The weakest part 

of this model is the presence of four insignificant parameters, i.e., those representing 

AR(1), AR(3), MA(1), and MA(3) lags. 

Diagnostic Checking 

Following is a summary table representing the adjusted R
2
 values, AIC, SBC, 

HQC, and the number of insignificant lags or parameters of different combinations of 

ARIMA used in this study for a quick comparison. 
Table 10: Comparison of probable ARIMA models with the bold row representing the most 

appropriate model 

ARIMA Model Adjusted R
2
 AIC SBC HQC Insignificant lags 

ARIMA (1, d, 0) .013 -5.181 -5.178 -5.180 None 

ARIMA (1, d, 1) .017 -5.184 -5.179 -5.182 None 

ARIMA (2, d, 1) .017 -5.184 -5.178 -5.182 One 

ARIMA (1, d, 2) .017 -5.184 -5.177 -5.182 One 

ARIMA (1, d, 3) .017 -5.184 -5.175 -5.181 Two 

ARIMA (2, d, 2) .017 -5.184 -5.176 -5.181 None 

ARIMA (3, d, 3) .017 -5.183 -5.172 -5.179 Four 

The summary of ARIMA models given in table 10 gives a clearer and an 

undisputed picture of the best model to be used for predicting OGDCL’s stock prices. As 

can be judged, this model is ARIMA (1, d, 1) which is marked by bold letters in the table. 

This model has an adjusted value of R
2
 which is at par with many other models. What 

makes the model better than the rest of the choices is that it has the lowest value of SBC -

-- an information criterion always preferred over the remaining criteria when selecting 

among competing models. 

Forecasting 
 In the aforementioned section, it was found that the most suitable ARIMA 

configuration for forecasting OGDCL’s prices is ARIMA (1, d, 1). This implies that daily 

stock prices of OGDCL can be predicted by taking into account one-day previous stock 

prices and one-day previous error term. Hence, mathematically, the following ARIMA 

model is to be employed: 

Yt = µ + φ1Yt-1 + εt + θ1εt-1 
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However, since we had taken logged differenced stock prices rather than their 

absolute values, therefore, assuming that Y
*

t represents stock prices after taking natural 

logarithms and then first differences, the equation just mentioned can be re-written as: 

Y
*
t = µ + φ1Y

*
t-1 + εt + θ1εt-1 

Since, of course, we want to predict stock prices rather than the change in stock 

prices, one method is to reverse the transformation we made in the form of taking first 

differences thereby making the series integrated again. Thus, in order to get the 

forecasting estimates of our stock prices rather than the first differences of stock prices, 

we re-formulate the model as: 

Yt - Yt-1 = µ + φ1(Yt-1 - Yt-2) + εt + θ1εt-1 

Re-arranging we get, 

   Yt = µ + φ1(Yt-1 - Yt-2) + εt + θ1εt-1 + Yt-1 

 The aforementioned formula represents the actual value of Yt and therefore 

includes the error term. Since, we will be estimating the value of Yt, our expression, i.e., 

Ŷt will, thus not include the error coefficient (Gujarati & Porter, 2004) and will be 

expressed as: 

  Ŷt = µ + φ1(Yt-1 - Yt-2) + θ1εt-1 + Yt-1 

In the context of the current study, we have taken daily stock price values of our 

variable of interest with effect from January 19, 2004 to December 14, 2018. Therefore, 

in order to forecast stock prices of OGDCL for December 15, 2018, we will use the 

following formula: 

  Ŷ15Dec2018 = µ + φ1(Y14Dec2018 - Y13Dec2018) + θ1ε14Dec2018 + Y14Dec2018 

 Putting the values of the constant of the model and the beta coefficients, the 

formula can be re-written as:  

Ŷ15Dec2018 = .000262 + (.652)(Y14Dec2018 - Y13Dec2018) + (-.551)ε14Dec2018 + Y14Dec2018 

 Finally, in order to compute the estimated value of Ŷt for December 15, 2018, we 

incorporate in the equation all the other values including the current and the lagged 

values of logged stock prices and the lagged value of the error term.  

Ŷ15Dec2018 = .000262 + (.652) (4.935265 - 4.935409) + (-.551) (.001624) + (4.935) 

Ŷ15Dec2018 = .000262 - .000094 - .000895 + 4.935 

Ŷ15Dec2018 = 4.934 (approx.) 

 The value of 4.934 represents the logged stock price. By taking the anti-log of 

4.934, we get 138.98. Hence, our forecasted value of the stock price of OGDCL for the 

following day, i.e., December 15, 2018 was Rs. 138.98. To reveal, no trading took place 

on December 15, 2018. However, the actual price of OGDCL’s shares on the next trading 

day, i.e., on December 17, 2018 was Rs. 138.35. Hence, the forecast error was an 

overestimate of Rs. 0.63.  

Analysis and Discussion 

The findings of the study given in the above section have shown that stock prices 

can be plausibly forecasted using the Box-Jenkins methodology. And as has been just 

mentioned, the most fitting ARIMA model for the study at hand is the ARIMA (1, d, 1) 

configuration. This result is quite reasonably in line with the findings of the previous 

studies undertaken with a view to test ARIMA model for its accuracy in forecasting a 
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given time series. For instance, Manoj and Madhu (2014) also employed the model to 

predict the production of Sugarcane in India and found out that the model was very 

efficient in short-term forecasting. However, the most suitable ARIMA layout for them 

was ARIMA (2, 1, 0) in contrast with ARIMA (1, d, 1) model that was appropriated for 

OGDCL’s prices in the current study. Similarly, Hamjah (2014) also used ARIMA 

method to predict rice production in Bangladesh and concluded that the model was very 

good in short term forecasting. 

The study of Mondal, Shit and Goswami (2014) could be considered the most 

relevant to this work since it was also used for predicting stock prices. They conducted 

the study using fifty six Indian companies’ stocks to check whether the model effectively 

gave any significant clue regarding the future prices of a given stock. They explored that 

ARIMA was very successful in predicting stock prices with around 85% of its predictions 

being correct. Adebiyi, Adewumi and Ayo (2014) also used the Box-Jenkins method to 

predict stock prices and came up with the same conclusion, i.e., an excellent short-term 

anticipation power of the model. 

A very few studies, however, failed to significantly predict their time series using 

the model under consideration. One of them, for instance, was conducted by Gay (2016) 

who took the BRIC countries’ data to explore the relationship of macroeconomic factors 

with stock returns but could not establish any. They then endeavored to check the 

relationship of stock return with its very own lagged values, thereby running the ARIMA 

method, but again ended up with no significant association of stock returns with its 

previous values. 

Nonetheless, the current study is in line with the results of most of the research 

work undertaken with a view to check whether ARIMA is a better predictor of time series 

data or not. As can be seen, many studies, including this, have figured out that the model 

works adequately in the short run.     

Conclusion 
Prediction has always been a challenge for scientists in most of the disciplines. 

When it comes to financial theory, the process of speculation becomes even more 

susceptible as there are normally too many aspects or factors that need to be considered 

for a realistic conjecture. Some theorists, therefore, prefer to forecast the current (and/or 

future) price of a time series on the basis of its past values as well as the past values of 

the disturbance term. This concept, popularly known as the Box-Jenkins method and 

technically as the ARIMA method, was also employed in the current study. From the 

findings of the study, it has been construed that ARIMA has a very good capacity to 

forecast future values in the short run. Of course the long-term prediction using lagged 

values of a variable will make only little sense, however. It was also observed that almost 

all ARIMA configurations experimented in this study had vigorous prediction powers 

which testifies the idea of letting the data speak about themselves. As a policy 

implication, the autoregressive integrated moving average model can be potentially used 

by stock market investors as a clue to anticipate whether the stocks that they have 

invested in are likely to make an upward move, or vice versa, in the near future. 
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